

Wendy H. Grillo¹, Gail P. Hollowell¹, S. Catherine Silver Key¹, Ruth S. Phillips¹, Mabel O. Royal¹, Sarah E. Council^{1,2}, David A. McDonald^{1,2}, and Sandra L. White^{1,2} Department of Biology¹ and Center for Science, Mathematics, and Technology Education², North Carolina Central University Durham NC 27707

ABSTRACT

The introductory science course is the first opportunity wherein students experience the academic rigor of college science (Daempfle, 2002) and according to the National Science Foundation the sciences have the highest attrition rates of any major (National Science Foundation, 1996). Undergraduate research experiences have been widely credited as an effective mechanism for enhancing the undergraduate experience (Lopatto, 2004), particularly the ability to enhance retention rates in pursuit of the undergraduate degree (Gregerman et al, 1998). As college educators, our main teaching goals are to increase student learning and improve student retention for our science majors. The Biology Department at North Carolina Central University (NCCU) with the support of Howard Hughes Medical Institute (HHMI) has created a mechanism for producing student success by integrating course-based undergraduate research experiences (CUREs) into the curricula and training new and current faculty in the development and delivery of engaging curricula. Our goal is to improve first year retention rates from Biology I to Biology III; help students better apply scientific concepts; and provide students with an early exposure to basic research techniques. Our prior participation in the HHMI Phage Hunters Advancing Genomics and Evolutionary Science (PHAGES) program provided a foundation and experience which was useful as we determined what would work and not work in scaled-up research-infused introductory courses for all of our majors. Our new inquirybased learning model is currently being implemented in 3 core biology classes using yeast as a common organism. We have adapted the modular concept within the course such that each course begins with an Introduction to Research module, followed by a module incorporating authentic research experiences. This is supported by a common set of basic techniques and relevant experimental designs alongside peer led teaching and learning activities.

ABOUT NCCU

- An HBCU located in Durham. NC
- A comprehensive liberal arts institution
- One of the 16 constituent institutions of the state university system
- Undergraduate Student Enrollment of 8500 with 400 Biology Majors
- Approximately 90% of the students enrolled in our institution are first generation college students
- Average SAT score for combined Math & Critical Reading Sections = 852 (Math = 428 & Critical Reading = 424)

HHMI **DEVELOPMENT & INFUSION OF COURSE-BASED UNDERGRADUATE RESEARCH EXPERIENCES (CURES) INTO INTRODUCTORY CORE COURSES OF A BIOLOGY CURRICULUM**

Traditional vs Course based Undergraduate Research Experiences (CURE) Labs

	Traditional Labs	Research Infused Labs			
	(Non-CURE)	(CURE)			
Organization of Labs	16 separate labs	2 Modules			
Skills	No focus on skills	Introduction to Research Module			
Experimental Design	No focus on skills	General Biology I and II Apply Scientific Method General Biology III Requires students to plan experiments before using it			
Pre-Lab Quizzes	Hard copy	Online			
Objective Lab Exams	Yes	No			
Lab Notebooks	No	Yes			

Scaffolding approach

Module Overview

		GENERAL BIOLOGY I	GENERAL BIOLOGY II	GENERAL BIOLOGY III	
Mod ule 1	Introduction to Research	Scientific M Measurer Pipetti	Application of Scientific Method Measurements Pipetting		
		Microso	ору	Microscopy with Spectrometry	
Mod ule 2	Yeast Research	Phylogeny Genomic Comparison	Fermentation Metabolism	Central Dogma of Molecular Biology	
Evaluation		Written Lab Report	Written Lab Report	Oral Presentation	

Detailed Diagrams of the Science & Communication Skills Emphasized in the CURE Labs Throughout the Semester

	Statistics & Graphing												
		Scientific method											
							Lab notebook						
Instructor-designed Student Designed		Instructor-designed Guided Inquiry: Instructor/Student-designed		Student-designed			Peer Oral						
and a	Micropipeting & Data Analysis	Microscopy: Yeast Viabiity	Peptic Ulcer Case Study	Oral Presentations	Promoter-lacZ	Promoter Bashing-lacZ	Experimental Design & Peer Review	Inhibition of Transcription - lacZ	Inhibition of Translation lacZ	Experimental Design	Stress Experiment	Stress Experiment	Evaluation & Research Skills Assessment
	Module 1: Introduction to Research Skills			Module 2: Inhibiting the Central Dogma of Molecular Biology									
	2	3	4	5	6	7	8	9	10	11	12	13	14
	Instructional Week												

Research Infused Laboratory Increases Student Retention in Biology

earnir

assistant.

As	ou
imp	oro
NC	CU
gra	dua
stu	der

•	Daemp
	Charac
	Biosce
•	Greger
	(1008)

HHMI Precollege and Undergraduate Science Education Program (Grant # 52007553). Strategic Evaluations, Durham, NC for the data analysis and graphics

Research Infused Laboratory Courses Enhance Students' Performance					
	Non-CURE Lab Sections (N=74)	CURE Lab Sections (N=89)			
f Students ng grade of A or B	17.5%	31.5%			
f Students g grade of C	23.0%	33.7%			
f Students ng grade of D or F	59.5%	34.8%			

p < 0.0001 by χ^2 test of these groups. p = 0.0026 by Fisher's exact test comparing passing (A, B, C) vs. failing (D, F) grades.

PEER LED TEAM LEARNING

In this course implementation, we have utilized peer led team learning communities to enhance faculty teaching and ensure effective development and implementation of innovative curricula. Each team consists of a faculty member, a postdoctoral fellow, a graduate assistant, and an undergraduate

CONCLUSIONS

ur university looks towards the future, this model will ove STEM teaching and learning assuring that students at J are not only attracted to the sciences, but retained and ated as scientifically curious, confident, and literate nts, prepared to make contributions to a global society.

REFERENCES

pfle, PA. (2002) Faculty Assumptions about the Student cteristics Required for Success in Introductory College Biology. ene 28(4): 19-33.

erman, S.R., Lerner, J.S., Hippel, W., Jonides, J., Nagda, B.A. (1998). Undergraduate Student-Faculty Research Partnerships Affect Student Retention. The Review of Higher Education, 22: 55-72.

• Lopatto, D. 2004. Survey of Undergraduate Research Experiences (SURE): First Findings. Cell Biol Educ. Winter; 3(4): 270–277.

ACKNOWLEDGEMENTS